ФЕНОЛЫ И ХИНОНЫ

Раздел А. Способы получения и химические превращения

A-1. В схеме превращений укажите реагенты и условия проведения реакций. Укажите перегруппировку $\Phi puca$, приведите ее механизм.

А-2. Осуществите последовательность реакций. Укажите, на какой стадии осуществляется таутомерное превращение.

А-3. Осуществите превращения. Укажите, на какой стадии реализуется реакция присоединения, приведите ее механизм.

А-4. В схеме превращений укажите реагенты и условия проведения реакций:

Укажите, на какой стадии реализуется *ipso*-замещение.

А-5. Осуществите превращения:

Укажите, на какой стадии образуется гидроперекись кумола, приведите механизм ее перегруппировки.

А-6. Выполните схему превращений. Укажите, на какой стадии образуется эфир фенола.

Толуол
$$\xrightarrow{\mathsf{H}_2\mathsf{SO}_4} \mathbf{A} \xrightarrow{\mathsf{NaOH}} \mathbf{B} \xrightarrow{\mathsf{NaOH}, \, \mathsf{t}^0} \mathbf{C} \xrightarrow{\mathsf{SeO}_2} \mathbf{D} \longrightarrow \mathbf{E} \xrightarrow{(\mathsf{CH}_3)_2\mathsf{SO}_4} \mathbf{F} \xrightarrow{\mathsf{LiAIH}_4} \mathbf{G}$$

А-7. Осуществите превращения. Представьте механизм реакции с реактивом *Гриньяра*.

Гидрохинон
$$\xrightarrow{\mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7}$$
 A $\xrightarrow{\mathsf{CH}_3\mathsf{MgI}}$ **B** $\xrightarrow{\mathsf{H}_2\mathsf{O},\ \mathsf{H}}$ **C**

А-8. Выполните схему превращений. Укажите, на какой стадии реализуется нуклеофильное замещение.

Хлорбензол
$$\xrightarrow{\text{Cl}_2}$$
 A $\xrightarrow{\text{NaOH, H}_2\text{O}}$ **B** $\xrightarrow{\text{Ag}_2\text{O}}$ **c** $\xrightarrow{\text{AlCl}_3}$ (*o*-изомер)

А-9. Выполните схему превращений. Укажите реакцию *Дильса - Альдера*.

Анилин
$$\xrightarrow{K_2Cr_2O_7}$$
 A $\xrightarrow{1. HCN}$ B $\xrightarrow{CH_2=CH-CH=CH_2}$ C

А-10. Выполните схему превращений:

o-Крезол
$$\xrightarrow{\text{NaOH}}$$
 $\xrightarrow{\text{CH}_2=\text{CH-CH}_2\text{Br}}$ $\xrightarrow{\text{B}}$ $\xrightarrow{\text{t}^\circ}$ $\xrightarrow{\text{OH}^-}$ $\xrightarrow{\text{D}}$ $\xrightarrow{\text{MnO}_2}$ $\xrightarrow{\text{E}}$ $\xrightarrow{\text{Ag(NH}_3)_2\text{OH}}$ $\xrightarrow{\text{F}}$ $\xrightarrow{\text{-H}_2\text{O}}$ $\xrightarrow{\text{G}}$

Укажите, на какой стадии происходит перегруппировка *Клайзена*, приведите ее механизм. **A-11.** Закончите уравнение реакции. Опишите превращения продукта реакции в щелочной среде

А-12. Закончите уравнение реакции. Приведите именное название реакции и ее механизм.

Фенол
$$CH_3CN$$
HCl, $ZnCl_2$

А-13. Выполните схему превращения. Приведите механизм реакции.

А-14. Напишите уравнение реакции. Приведите механизм реакции.

Бензохинон-1,4
$$\xrightarrow{\text{CH}_3\text{OH}}$$

А-15. Осуществите превращение. Приведите именное название реакции и ее механизм.

Раздел Б. Химические свойства

Б-1. Напишите схемы взаимодействия n-гидроксибензилового спирта с указанными реагентами:

a) Na;

 $_{\rm J}$) CH₃OH, H⁺;

б) NaOH;

e) CH₃I, OH⁻;

B) NaHCO₃;

 \mathbf{w}) CH₃COOH, H⁺;

г) HBr;

3) C_6H_5COCl , OH^- .

- Б-2. Для каждой пары соединений приведите химическую реакцию, позволяющую отличить эти соединения: а) *п*-крезол и бензиловый спирт; б) анизол и *о*-крезол. Б-3. Для каждой пары соединений приведите химическую реакцию, позволяющую отличить эти соединения:
 - а)фенилацетат и *n*-гидроксиацетофенон;
 - б)фенол и бензойная кислота;
 - в)пикриновая кислота и фенол.
- Б-4. Сравните отношение к действию окислителей следующих соединений:
 - а) бензола;

г) фенола;

б) толуола;

- д) гидрохинона;
- в) бензилового спирта; е) пирокатехина.
- Б-5. Сравните реакционную способность фенола, бензола фенолята натрия в реакциях электрофильного замещения:
- бромирования, приведите условия нитрования И сульфирования фенола и бензола;
- б) укажите какое из перечисленных выше соединений взаимодействует с фенилдиазонием, формальдегидом в кислой и щелочной среде, CO₂, CHCl₃ + NaOH.
- **Б-6.** Приведите реакции, протекающие между n-аминофенолом и следующими реагентами:
 - a) NaOH;
 - б) HCl;
 - B) CH₃I;
 - Γ) CH₃COCl;
 - д) (CH₃)₂SO₄, OH⁻.
- **Б-7.** Приведите реакции, протекающие между n-аминофенолом и следующими реагентами:
 - a) CrO_3 , H_2O ;
 - б) HNO₃, H₂SO₄;

B) C_6H_5COCl .

Б-8. Напишите реакции, назовите продукты:

Б-9. Напишите реакции, назовите продукты:

a)
$$\xrightarrow{\text{HCI}}$$
 ? $\xrightarrow{\text{KCIO}_3}$? $\xrightarrow{\text{HCI}}$? $\xrightarrow{\text{KCIO}_3}$? $\xrightarrow{\text{CIO}_3}$?

Б-10. Проставьте структуру исходного соединения в следующих превращениях:

a) ?
$$\xrightarrow{t^0}$$
 HO \xrightarrow{C} \xrightarrow{C} $\xrightarrow{CO_2}$ \xrightarrow{NaOH} $\xrightarrow{H_2N}$ \xrightarrow{COOH}

Б-11. Укажите структуру исходного соединения в следующих превращениях:

a) ?
$$C_6H_5N_2^{\oplus}CI^{\ominus}$$
 OH $N=N-C_6H_5$ OD OD $CH_2-CH=CH_2$

Б-12. Какое соединение образует следующие продукты в реакции:

?
$$\frac{2 O_2}{V_2 O_5}$$
 HO—OH + $2 (CH_3)_2 C=0$

Б-13. Закончите уравнения реакций, назовите продукты:

a)
$$O-CH(CH_3)_2 \xrightarrow{BF_3}$$
?

$$CH_3 \xrightarrow{C} O-CH-CH=CH_2 \xrightarrow{\triangle}$$
?

6)
$$H_3C$$
 \longrightarrow O - CH - CH = CH_2 \longrightarrow ?

Б-14. Закончите уравнения реакций, назовите продукты:

HO OH
$$\mu$$
36. OH $2 \text{ CH}_2\text{I}_2$?

Б-15. Закончите уравнения реакций, назовите продукты:

a)
$$O \longrightarrow O$$
 $O \longrightarrow O$?

Раздел В. Синтезы с участием фенолов и хинонов

В-1. Из фенола получите:

- а) циклогексанол;
- б) циклогексанон;
- в) адипиновую кислоту.

В-2. Получите из бензола:

- а) *п*-нитроанизол;
- б) м-бромфенол;
- в) 3-ацетил-4-гидрокситолуол.

В-3. Исходя из хлорбензола, напишите схемы получения:

- а) 2,4-динитрофенола;
- б) пирокатехина;
- в) салициловой кислоты.

В-4. Исходя из фенола получите:

- а) хлоранил;
- в) фенолфталеин.

В-5. Напишите схемы получения из нитробензола:

- а) *п*-аминофенола;
- б) *п*-аминосалициловой кислоты;
- в) салицилового альдегида.

В-6. Получите из резорцина:

- а) 4-этил-1,3-дигидроксибензол;
- б) 1,3-циклогександион;
- в) 1,3-дигидрокси-4,6-диацетилбензол.

В-7. Напишите реакции, с помощью которых можно осуществить превращение бензохинона в:

- а) *п*-нитрозофенол;
- б) 1,2,4-тригидроксибензол;
- в) 1,4-дигидроксинафталин.

В-8. Получите из кумола:

- а) пикриновую кислоту;
- б) 2,4,4,6-тетрабромциклогексадиен;
- в) 2,3-дихлоргидрохинон.

В-9. Превратите o-крезол в:

- а) 2-гидрокси-5-хлорбензальдегид;
- б) 2-гидрокси-5-ацетилбензойную кислоту;
- в) 2-метил-6-аллилфенол.

В-10. Получите из фенола:

- а) *п*-аллиланизол (анисовое масло);
- б) *п*-этоксиацетанил (фенацетин);
- в) 2,4-дихлорфеноксиуксусную кислоту (гербицид «2,4-Д»).

- В-11. Исходя из бензола, спланируйте синтезы:
 - а) 4-гидроксиазобензол-4`-карбоновой кислоты;
 - б) *п*-гидроксиацетофенона;
 - в) ацетилсалициловой кислоты (аспирина).

В-12. Как из фенола получить:

- а) N-метил-*n*-аминофенол (*метол*);
- б) n-аминофенол (родинол);
- в) 2,4-диаминофенол (амидол)?

В-13. Получите из анизола:

- а) о-метоксифенол (гваякол);
- б) n-аллиланизол (эcmparon);
- в) 4-аллил-1,2-метилендиоксибензол (сафрол):

В-14. Из нитробензола получите:

- а) бензохинон-1,4;
- б) диметиловый эфир гидрохинона;
- в) салициловой альдегид.

В-15. Спланируйте органический синтез из анилина:

- а) бензохинона-1,4;
- б)1,2,4-тригидроксибензола;
- в) фенолфталеина.

Раздел Г. Строение и реакционная способность

- **Г-1.** Сравните по легкости расщепления под действием HI следующие эфиры фенолов:
 - а) аллиловый эфир;
 - б) дифениловый эфир;
 - в) трет-бутиловый эфир;
 - г) анизол.

Г-2. Сравните кислотность следующих фенолов, дайте объяснения:

$$pK_a$$
: 9.7 9.11 10.2 9.89 7.21

- Г-3. Расположите следующие фенолы по возрастанию кислотности:
 - а) пикриновая кислота;
- Γ) *n*-нитрофенол;

б) *п*-аминофенол;

д) фенол;

в) м-нитрофенол;

- е) *п*-крезол.
- **Г-4.** Расположите следующие фенолы по возрастающей реакционной способности в реакции ацилирования уксусным ангидридом:
 - а) фенол;
 - б) *n*-крезол;
 - в) n-нитрофенол;
 - г) 2,6-диметилфенол;
 - д) пикриновая кислота.
- **Г-5.** Объясните изменение величин нормальных потенциалов E_0 для следующих хинонов:

	E_{o},B
1) Бензохинон-1,4	0.79
2) Нафтохинон-1,4	0.47
3) Антрахинон-1,4	0.40
4) Антрахинон-9,10	0.15

- **Г-6.** Расположите следующие хиноны в ряд по возрастанию их окислительных свойств:
 - а) цианбензохинон-1,4;
 - б) 1,4-бензохинон;
 - в) метоксибензохинон-1,4;
 - г) тетрахлорбензохинон-1,4 (хлоранил).
- **Г-7.** Расположите приведенные ниже соединения в порядке возрастания скорости их взаимодействия с электрофильными реагентами:
 - а) фенол;
 - б) о-метоксифенол;
 - в) *о*-крезол;

- г) о-хлорфенол;
- д) пирокатехин.

Г-8. Расположите по убыванию кислотности:

- 1) бензиловый спирт; 2) фенол; 3) угольную кислоту; 4) бензолсульфокислоту.
- **Г-9.** Объясните, почему скорость образования n-нитродифениловых эфиров изменяется в зависимости от природы используемого фенолята в такой последовательности: -OCH₃ > -H > -CI > -NO₂ ?

$$O_2N$$
 O_2N O_2N

Г-10. Объясните изменение величины нормального потенциала E_0 в ряду следующих хинонов:

	E_{o},B
1) Бензохинон-1,2	0.79
2) Нафтохинон-1,2	0.56
3) Антрахинон-1,2	0.49

Г-11. Электрохимическое восстановление хинонов протекает через стадию образования *семихинонов* (ион-радикалов).

Подкисление раствора вызывает диспропорционирование радикалов, приводящее к образованию хинона и гидрохинона. Объясните механизм этого превращения.

- **Г-12.** Расположите перечисленные ниже хиноны в порядке возрастания величины нормального потенциала E_0 :
 - *п*-бензохинон;
 - 2) 4,4-дифенохинон;
 - 3) цис-2,2-дифенохинон;
 - 4) 9,10-антрахинон;
 - 5) 1,4-нафтохинон.

Примите во внимание различия в степени стабилизации хинонов и гидрохинонов с учетом пространственных факторов.

- **Г-13.** Сравните реакционную способность гидрохинона, резорцина и пирокатехина в условиях реакции Кольбе. В каком положении будет преимущественно происходить монозамещение?
- **Г-14.** *О* и n-нитрофенолы существенно различаются по летучести (Почему?). Будут ли наблюдаться такие различия для o- и n-гидроксибензойных кислот, o- и n-цианфенолов и o- и n-метоксибензальдегидов?
- **Г-15.** Окисление фенола на воздухе начинается с образования фенокси-радикала, который может затем димеризоваться или диспропорционировать.

Напишите эти реакции для следующих фенокси-радикалов: 2,6-ди-*трет*-бутилфенокси- и 2,6-ди-*трет*-бутил-4-изопропилфеноксирадикала.

Объясните, почему 2,4,6-ди-*трет*-бутилфенокси-радикал не претерпевает подобных превращений.

Раздел Д. Механизмы реакций с участием фенолов и хинонов

Д-1. Предложите свои объяснения, основанные на знании механизмов реакций, следующим фактам:

OCH₃
$$\xrightarrow{\text{CCI}_4}$$
 $\xrightarrow{\text{Br}_2}$ $\xrightarrow{\text{OCH}_3}$ $\xrightarrow{\text{OCH}_3}$ $\xrightarrow{\text{OCH}_3}$ $\xrightarrow{\text{OCCH}_3}$ $\xrightarrow{\text{OCCH}_3}$ $\xrightarrow{\text{OCCH}_3}$

Д-2. Объясните различия в протекании реакций бромирования:

1) OH OH OH OH 2) OH
$$Br_2$$
 Br_2 Br_2 Br_3 Br_4 Br_5 Br_6 Br_7 Br_8 Br_8 Br_8 Br_8 Br_8 Br_8 Br_8 Br_8 Br_8

Д-3. Чем обусловлены различия при сульфировании фенола:

OH
$$SO_3H$$
 SO_3H SO_3H SO_3H SO_3H SO_3H

Д-4. Дайте объяснения, основанные на знании механизмов реакций, следующим фактам:

1) O OH CN OH CN
$$CH_3OH$$
 CH_3OH CH

Д-5. Объясните различия:

1) ONa OH COONa
$$CO_2$$
 OH $COONa$ CO_2 OH $COOK$

Д-6. Дайте объяснения, основанные на знании механизмов реакций, следующим фактам:

Д-7. Дайте объяснения, основанные на знании механизмов реакций, следующим фактам:

Д-8. Объясните различия в протекании реакций:

Д-9. Дайте объяснения, основанные на знании механизмов реакций, следующим фактам:

1)
$$COOH$$
 2) $COOH$ OH OH OH OH

Д-10. Предложите механизм для протекания реакции (на солнечном свету):

$$O \longrightarrow O \qquad CH_3CH=O \\ hv \qquad HO \longrightarrow OH$$

Д-11. Разложение гидроперекиси кумола кислотой приводит к образованию фенола и ацетона (кумольный способ получения фенола — реакция Удриса-Сергеева). Разложение гидроперекиси n-нитрофенилдифенилметана приводит к фенолу и n-нитробензофенону. Почему в этой реакции не получился n-нитрофенол?

Д-12. При обработке салициловой кислоты избытком брома в водном растворе она легко образует трибромфенол. Можно ли ожидать, что м- и n-гидроксибензойные кислоты будут реагировать подобным образом?

1) OH COOH
$$3Br_2$$
 Br $+$ CO₂

2) OH $3Br_2$? $+$ COOH $+$ $+$ CO₂

$$+$$
 COOH $+$ COOH $+$ COOH $+$ COOH $+$ COOH $+$ $+$ CO₂

$$+$$
 COOH $+$ COO

- **Д-13.** Фенилгидроксиламин в сернокислой среде превращается в n-аминофенол, в солянокислой в n-хлоранилин и n-аминофенол, в присутствии HBr в n-броманилин и n-аминофенол. Каков механизм этих превращений? Какие образуются соединения, если реакцию вести в метаноле в присутствии H_2SO_4 ?
- **Д-14.** Рассмотрите механизм нижеприведенной реакции конденсации. Почему не происходит реакция поликонденсации?

Д-15. Рассмотрите механизм реакции поликонденсации. Что образуется, если взять o-крезол и уксусный альдегид?

$$\begin{array}{c|c} OH & OH & OH \\ \hline n & CH_2O & CH_2 & CH_2 \\ \hline \end{array}$$

Раздел Е. Определение структуры по химическим свойствам

- **E-1.** Определите структуру соединения состава $C_6H_6O_2$, которое при обработке оксидом серебра превращается в бензохинон-1,2, а при взаимодействии с йодистым метиленом в щелочном растворе превращается в бициклическое соединение состава $C_7H_6O_2$.
- **E-2.** Определите структуру соединения состава $C_6H_6O_2$, которое при взаимодействии с гидроксиламином превращается в диоксим $(C_6H_8N_2O_2)$, а при взаимодействии с эквимолярным количеством водорода над никелевым катализатором в циклогександион-1,3.
- **E-3.** Определите структуру соединения состава С₉H₉O₂, которое не растворяется в водном растворе NaOH, а после нагревания с AICl₃ изомеризуется, превращаясь в соединение, растворимое в водном растворе щелочи, которое дает иодоформную реакцию, образуя при этом 4-гидрокси-2-метилбензойную кислоту.
- **E-4.** Определите структуру соединения $C_7H_6O_2$, которое дает окрашивание с FeCl₃, вступает в реакцию "серебряного зеркала", превращаясь в соединение $C_7H_6O_3$, а при бромировании (Br₂ в CCl₄) образует только одно монобромпроизводное.
- **E-5.** Определите структуру соединения $C_6H_4O_2$, которое при взаимодействии с эквимолярным количеством гидроксиламина превращается в соединение $C_6H_5NO_2$, последнее может быть получено при нитрозировании фенола.
- **E-6.** Определите структуру соединения состава $C_8H_8O_2$, которое при нагревании с $AlCl_3$ превращается в изомерное соединение, последнее после обработки щелочным раствором брома образует *п*-гидроксибензойную кислоту.
- **Е-7.** Определите структуру соединения состава $C_{11}H_{14}O$, которое обесцвечивает бромную воду, а при нагревании изомеризуется в 3-(2-гидрокси-3-метилфенил)-бутен-1.

- **Е-8.** Определите структуру соединения состава $C_{11}H_{14}O$, которое обесцвечивает бромную воду, а при нагревании превращается в 2,6-диметил-4-аллилфенол.
- **E-9.** Вещество $C_7H_6CINO_3$ после восстановления до соединения $C_7H_8CINO_2$ и дезаминирования превращается в *n*-хлоранизол. Если же исходное вещество нагреть с водным раствором щелочи и подкислить, то получится соединение $C_7H_7NO_4$, которое легко перегоняется с водяным паром. Установите строение всех упомянутых в задаче соединений.
- **E-10.** Установите строение соединения $C_7H_6O_3$, которое растворяется в содовом растворе с выделением CO_2 , дает цветную реакцию с $FeCl_3$, а при кипячении с уксусным ангидридом образует ацетилсалициловую кислоту.
- **E-11.** Определите структуру соединения состава C_6H_7NO , которое растворяется и в кислотах и щелочах, а при карбоксилировании (синтез *Кольбе*) образует *n*-аминосалициловую кислоту.
- **E-12.** Определите структуру соединения $C_6H_4O_2$, которое при взаимодействии с бутадиеном-1,3 образует аддукт состава $C_{10}H_{10}O_2$, последний после изомеризации и дегидрирования может быть превращен в 1,4-дигидроксинафталин.
- **Е-13.** Определите структуру соединения $C_7H_6O_3$, которое при взаимодействии диметилсульфатом cщелочном растворе В образует вещество $C_9H_{10}O_3$, а при нагревании с метанолом в присутствии превращается В метиловый эфир 3кислоты гидроксибензойной кислоты.
- **E-14.** Установите структуру соединения $C_4H_2Br_4O$, которое образуется при обработке фенола бромной водой, а при нагревании с водным раствором щелочи превращается в 2,6-дибромбензохинон-1,4.
- **E-15.** Определите структуру полициклического соединения, легко растворимого в щелочах (при этом появляется малиновое окрашивание, которое при добавлении избытка щелочи исчезает).

Состав соединения $C_{20}H_{14}O_4$, а в ИК-спектре его присутствуют полосы групп -C=O и -OH.