
Алкены

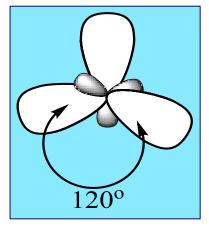
Алкены – ненасыщенные углеводороды с одной **C=C** связью.

$$C_nH_{2n}$$

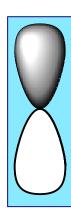
С=С – функциональная группа алкенов

Простейший представитель этилен

Этилен, выделяемый яблоками, ускоряет созревание плодов и ягод:

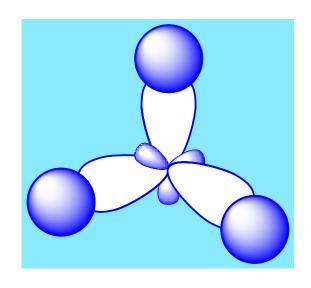

Источник: http://images.yandex.ru

Электронное строение этилена (SP²-гибридное состояние атома C)

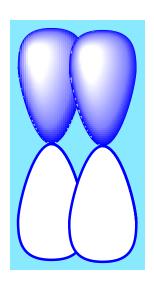

C* 1s² 2s¹2p³

3 гибридные sp²-орбитали 1 негибридизованная p-орбиталь

гибридизуются

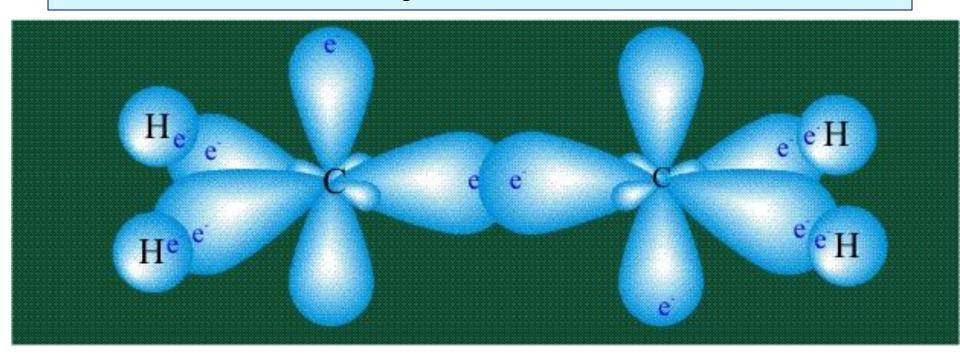


sp²-орбитали

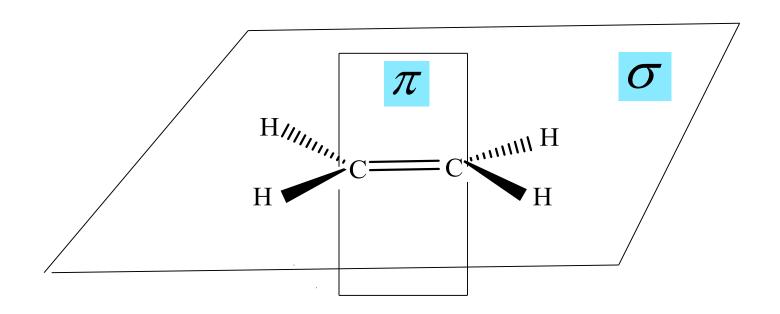


р-орбиталь

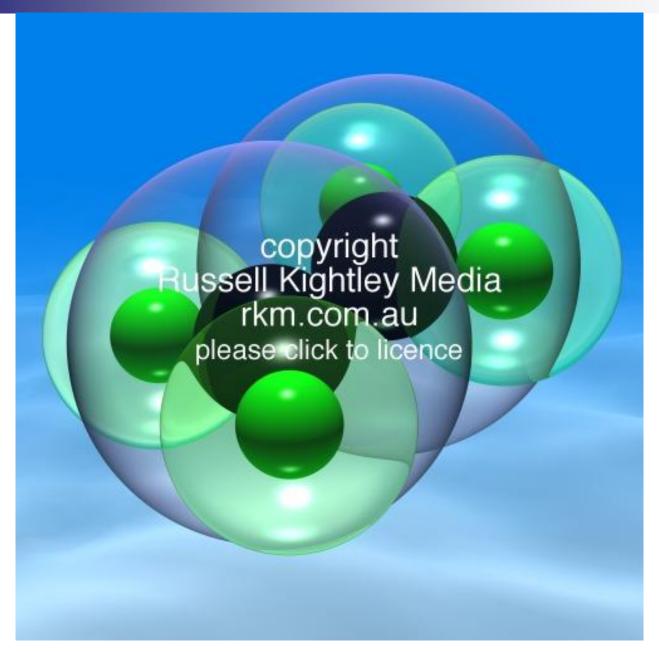
Связи в этилене



Гибридные орбитали образуют 3 освязи



Негибридизованные Р-орбитали образуют 1 π-связь


Атомно – орбитальная модель молекулы этилена

Пространственное строение этилена

Наличие плоскости пи-связи объясняет возможность геометрической изомерии у алкенов.

Источник: http://images.yandex.ru

Химические свойства алкенов

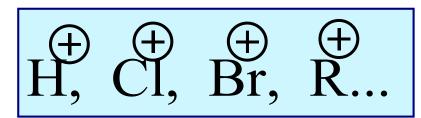
Общая характеристика.

Алкены – реакционноспособный класс соединений. Они вступают в многочисленные реакции, большинство из которых идут за счет разрыва менее прочной пи-связи.

Е С-С (σ-) ~ 350 Кдж/моль

E C=C (π-) ~ 260 Кдж/моль

Характерные реакции

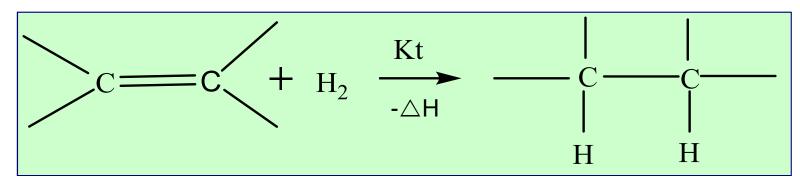

Присоединение

– наиболее характерный тип реакций.

Двойная связь – донор электронов, поэтому она склонна присоединять:

Е – электрофилы

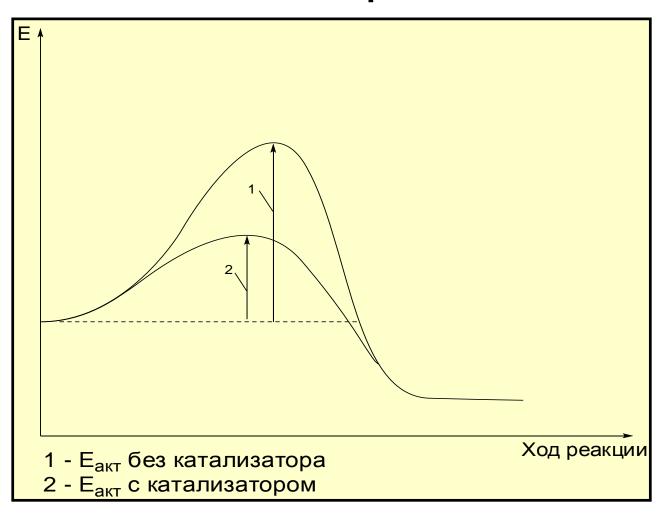
R – радикалы ——



R, Cl, Br, CCl₃ ...

Классификация реакций алкенов

- 1. Реакции присоединения:
 - Каталитическое гидрирование
 - Электрофильное присоединение
 - Полимеризация
- 2. Реакции окисления.
- 3. Реакции замещения.


Каталитическое гидрирование

Катализаторы – Ni, Pt, Pd

- Роль катализатора снижение энергии активации реакции.
- Теплота гидрирования △Н количество тепла, выделяющееся при гидрировании ненасыщенных соединений. Дает представление об относительной устойчивости алкенов.

Катализатор снижает энергию активации реакции

Относительная устойчивость алкенов: чем меньше теплота гидрирования, тем устойчивее алкен.

Название алкена	∆Н гидрирования, кДж/моль
CH ₂ =CH ₂	137,1
CH ₃ -CH=CH ₂	125,8
Цис-CH ₃ -CH=CH-CH ₃	119,7
Транс-CH ₃ -CH=CH-CH ₃	115,6

Вывод?

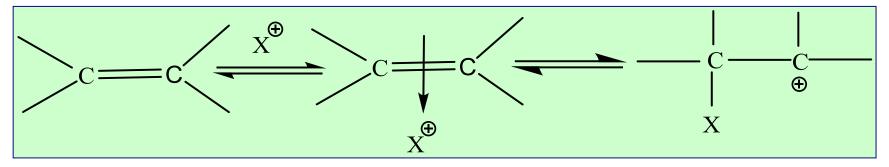
Чем больше радикалов при двойной связи, тем устойчивее алкен

Ряд устойчивости алкенов:

$$CR_2=CH_2 > CHR=CH_2 > CH_2=CH_2$$

Электрофильное присоединение

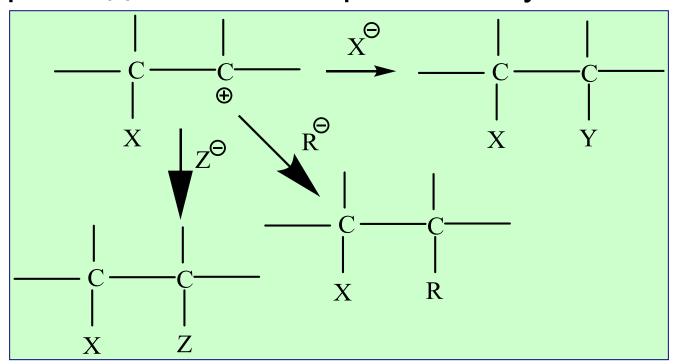
Реакции протекают при комнатной температуре, не требуют освещения, следовательно – механизм ионный.


Схема реакции:

 $XY = Cl_2$, Br_2 , HCl, HBr, Hl, H_2O

Механизм электрофильного присоединения

$$XY \longrightarrow X^{\oplus} + Y^{\Theta}$$


т - комплекс

σ- комплекс

$$\begin{array}{c|c}
 & \downarrow & \downarrow & \downarrow \\
 & C & \longrightarrow C$$

Сигма – комплекс является карбокатионом – частицей с положительным зарядом на атоме С.

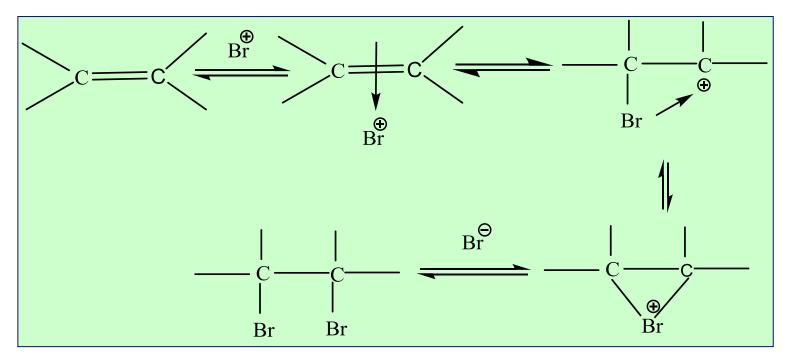
 Если в реакционной среде присутствуют другие анионы, они тоже могут присоединяться к карбокатиону:

Например, присоединение брома, растворенного в воде.

 Эта качественная реакция на двойную С=С-связь протекает с обесцвечиванием раствора брома и образованием двух продуктов:

$$CH_2=CH_2 + Br_2 \xrightarrow{H_2O} CH_2Br - CH_2Br + CH_2Br - CH_2OH$$

Примеры реакций электрофильного присоединения


- 1. Присоединение галогенов.
 - □ Присоединяются не все галогены, а только хлор и бром!
 - □ Поляризация нейтральной молекулы галогена может происходить под действием полярного растворителя или под действием двойной связи алкена.

$$CH_2=CH_2 + Br_2 \xrightarrow{CCl_4} CH_2Br - CH_2Br$$

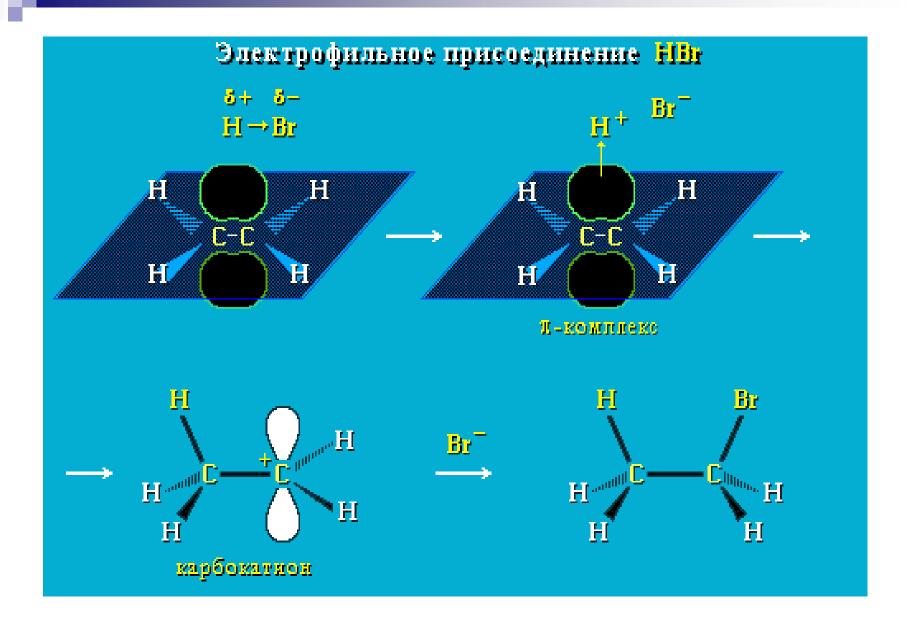
Красно-коричневый раствор брома становится бесцветным

Механизм бромирования

$$Br_2 \longrightarrow Br + Br$$

Катион бромония. Более устойчив, чем карбокатион.

Электрофильное присоединение


2. Присоединение галогеноводородов

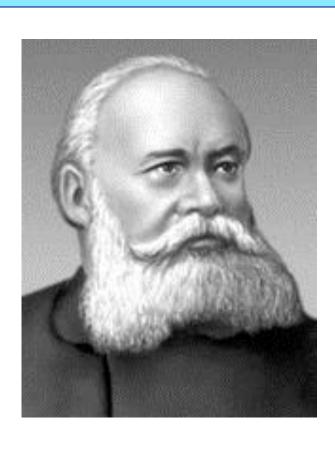
$$CH_2=CH_2 + HHal \longrightarrow CH_3-CH_2Hal$$

$$HHal = HCl, HBr, HI$$

Ряд активности кислот в этой реакции: HI > HBr > HCI

Механизм присоединения галогеноводородов

Источник: http://images.yandex.ru

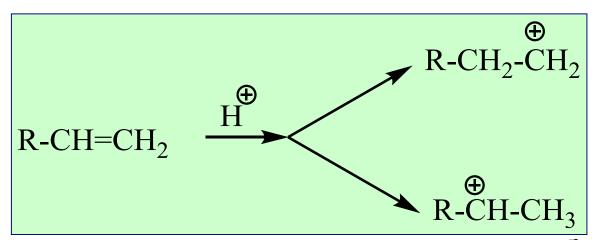

Присоединение к несимметричным алкенам

Региоселективность присоединения!

Правило Марковникова (1869):

кислоты и вода присоединяются к несимметричным алкенам таким образом, что водород присоединяется к более гидрированному атому углерода.

Марковников Владимир Васильевич (1837- 1904)



- Выпускник Казанского университета.
- С 1869 года профессор кафедры химии.
- Основатель научной школы.

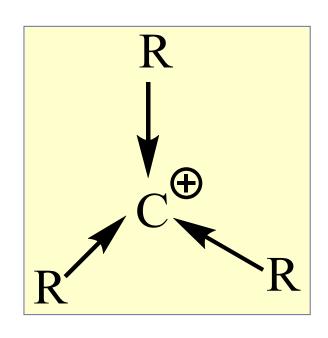
Источник: http://images.yandex.ru

Объяснение правила Марковникова.

Реакция протекает через образование наиболее устойчивой промежуточной частицы – карбокатиона.

первичный

I₃ вторичный, более устойчивый


Ряд устойчивости карбокатионов:

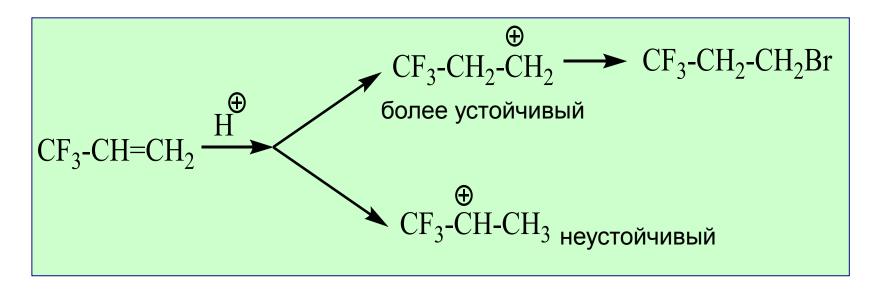
$${
m R}_{3}^{igoplus} > {
m R}_{2}^{igoplus} > {
m R}_{3}^{igoplus} > {
m$$

Правило Марковникова в современной формулировке:

присоединение протона к алкену происходит с образованием более стабильного карбокатиона.

Третичный карбокатион

Устойчивый за счет электронодонорного влияния радикалов


Антимарковниковское присоединение

 CF_3 - $CH=CH_2+HBr \rightarrow CF_3$ - CH_2 - CH_2 Br Формально реакция идет против правила Марковникова.

СF₃ – электроноакцепторный заместитель Другие электроноакцепторы:

NO₂, SO₃H, COOH, галогены и т.п.

Антимарковниковское присоединение

- Реакция только формально идет против правила Марковникова.
- Фактически ему подчиняется, так как идет через более устойчивый карбокатион.

Перекисный эффект Хараша

■ CH_3 - $CH=CH_2$ + $HBr \xrightarrow{X}$ CH_3 - CH_2 - CH_2 Br $X^{\bullet} = O_2$, H_2O_2 , ROOR

Механизм свободнорадикальный:

- 1. $H_2O_2 \rightarrow 2OH^{\bullet}$ $OH^{\bullet} + HBr \rightarrow H_2O + Br^{\bullet}$
- 2. CH_3 - $CH=CH_2$ + $Br^{\bullet} \rightarrow CH_3$ - CH^{\bullet} - CH_2 Br более устойчивый радикал CH_3 - CH^{\bullet} - CH_2 Br + $HBr \rightarrow CH_3$ - CH_2 - CH_2 Br + Br^{\bullet} и т.д.
- 3. Два любых радикала соединяются между собой.

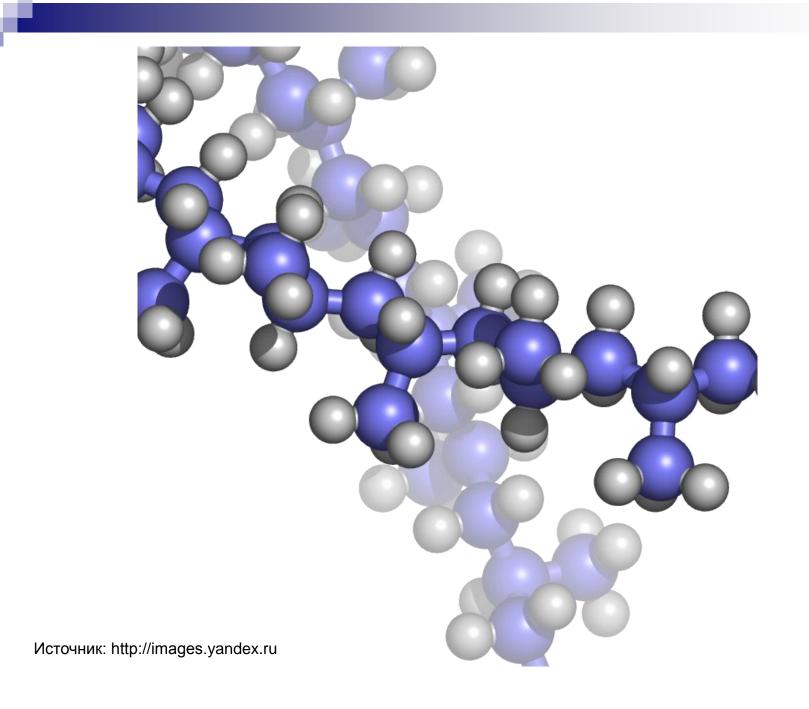
Электрофильное присоединение

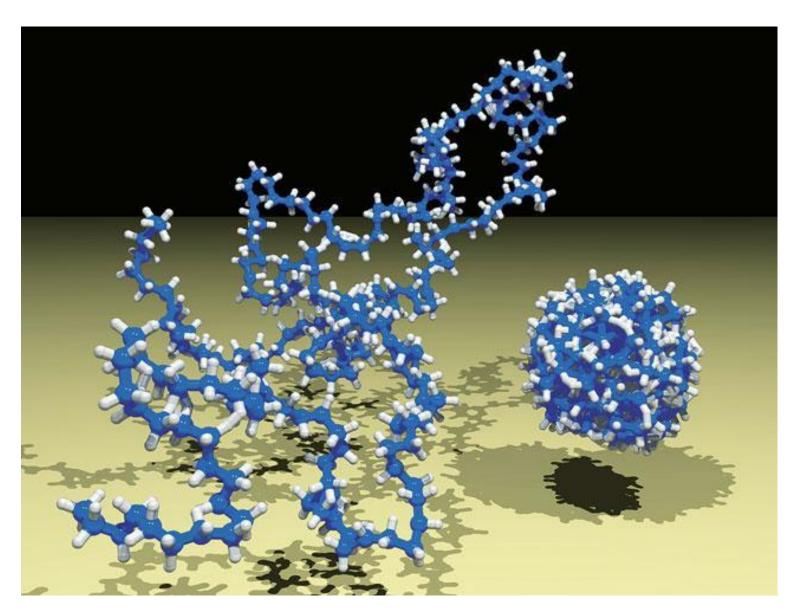
- 3. Гидратация присоединение воды
 - □ Реакция протекает в присутствии кислотных катализаторов, чаще всего это серная кислота.
 - □ Реакция подчиняется правилу Марковникова.

$$CH_2=CH_2 + H_2O \xrightarrow{\bigoplus} CH_3 - CH_2OH$$

Дешевый способ получения спиртов

Полимеризация алкенов


 Полимеризация – это процесс, в котором исходные вещества (мономеры) последовательно присоединяются друг к другу, образуя макромолекулу – полимер.


$$nCH_3-CH=CH_2 \xrightarrow{In} -[-CH-CH_2-]_{n}$$

$$CH_3$$

In – инициаторы полимеризации: катионы, анионы или радикалы

Степень полимеризации

Источник: http://images.yandex.ru

Полимеры в нашей жизни

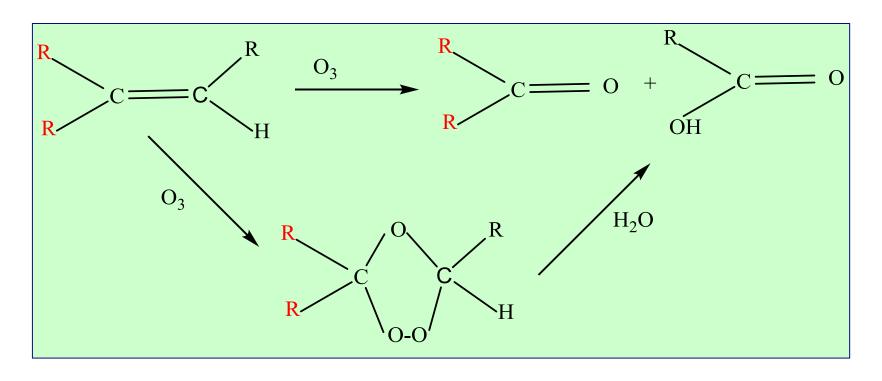
Источник: http://images.yandex.ru

Окисление алкенов

- 1. Мягкое окисление (разрыв только пи-связи).
 - □ Реакция Вагнера.
 - □ Реакция Прилежаева.
- 2. Жесткое окисление (разрыв и пи-, и сигма- связей)
 - □ Озонолиз.
 - □ Окисление перманганатом калия в кислой среде.

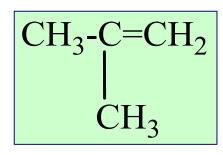
Мягкое окисление

- Реакция Вагнера.
 - □ Качественная реакция на двойные связи, так как раствор перманганата обесцвечивается.
 - Метод синтеза гликолей двухатомных спиртов с гидроксилами при соседних атомах углерода.
 - □ Цис-присоединение.


Мягкое окисление

- Реакция Прилежаева
 - □ Окисление надкислотами (перекисными кислотами).
 - □ Транс-присоединение.

 Окисление перманганатом калия в кислой среде


В результате образуется смесь кислот и кетонов. Анализ этой смеси позволяет идентифицировать алкен, то есть устанавливать его структуру.

■ Озонолиз — разложение озоном

 Реакции с деструкцией углеродного скелета используют для установления структуры алкенов.

■ Например, какова структура С₄H₈?

Или?

$$\begin{array}{c|cccc} CH_3\text{-}C=CH_2 & \xrightarrow{1.O_3} & CH_3\text{-}C=O & + & HCOOH (CO_2 + H_2O) \\ CH_3 & & CH_3 & & CH_3 & & \end{array}$$

$$CH_3$$
-CH=CH-CH₃ $\xrightarrow{1.O_3}$ 2 CH₃-COOH $2.H_2O$

Реакции замещения в алкенах

Реакция Львова М.Д. (1883 г).

При температуре 500-600°С взаимодействие с хлором протекает как реакция замещения:

CH₃-CH=CH₂ + Cl₂ → Cl-CH₂-CH=CH₂ + HCl

Реакции замещения в алкенах

 Аналогично хлорированию можно осуществить бромирование действием Nбромсукцинимида (NBS):

 CH_3 - $CH=CH_2$ + NBS \rightarrow Br- CH_2 - $CH=CH_2$ + HBr